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Computer simulation study on the swelling of a polyelectrolyte gel by a Stockmayer solvent

Z.-Y. Lu* and R. Hentschke†

FB Physik and Institut fu¨r Materialwissenschaften, Bergische Universita¨t, D-42097 Wuppertal, Germany
~Received 13 February 2003; published 30 June 2003!

The swelling of a model polyelectrolyte gel is studied via three-dimensional molecular dynamics simula-
tions, taking into account the counterions and the solvent explicitly. Each network bead carries a chargeq* .
The counterion charge is2q* , and thus the total system is neutral. The solvent is modeled via a Stockmayer
fluid, i.e., each solvent particle is a point dipole plus a Lennard-Jones interaction center. A ‘‘two-box–particle
transfer’’ simulation method is applied to calculate the swelling ratio of the network as well as the counterion
mobility. The swelling of the network shows a broad maximum as a function ofq* at Tr* 5T* /Tc* 51.05 and
Pr* 5P* /Pc* 51.0. Here,Tc* and Pc* are the critical temperature and the critical pressure of the pure Stock-
mayer solvent, respectively, with dipole moments given bym* 251.0, 2.0, 3.0, and 4.0. The residence time of
the counterions is calculated, showing a strong coupling to the charged network beads~condensation! asq*
increases. Additional simulations at three different charge strengths~i.e., q* 50.5, 3.5, and 8.6! illustrate the
complicated swelling behavior of the network under supercritical and subcritical conditions.

DOI: 10.1103/PhysRevE.67.061807 PACS number~s!: 61.25.Hq, 05.10.2a, 82.70.Gg, 82.60.Lf
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I. INTRODUCTION

Polyelectrolytes, charged polymers which can dissoc
ions in polar solvent, have many industrial applications~e.g.,
diapers! and play an important role in the biological scienc
~e.g., DNA and proteins! @1–3#. Theoretical prediction of
polyelectrolyte behavior is more difficult than in the case
neutral polymers. Due to the long-range nature of elec
static interactions and the existence of counterions, polye
trolyte systems possess several different length and
scales. Therefore, analytic theory or scaling auguments
come very complicated@4#. Computer simulations, eve
though these too are more difficult in the case of polyel
trolytes, can serve as an alternative tool to investigate c
formational and dynamical properties on a nanoscopic le
@4–6#.

Polyelectrolytes can form networks which swell or shri
in response to the change of thermodynamic conditio
Compared to the neutral network, there are new factors, s
as network charge density and the polarity of the solve
which are essential to the swelling. Because polyelectro
networks are so complicated, detailed studies on the mi
scopic level are scarce. The swelling of a two-dimensio
polyelectrolyte gel was simulated by Aalberts@7#. His model,
which yields a first-order phase transition, is highly simp
fied, and the ionic groups are not simulated explicitly bu
counterion pressure is introduced instead to mimic the
motic pressure due to the counterions. However, thr
dimensional simulation studies including the ionizab
groups in the network, explicit counterions, and explicit s
vent are needed, because this kind of detail is necessa
generate a realistic gel behavior@8#. Schneider and Linse
simulated the swelling of a three-dimensional defect-f
polyelectrolyte gel, with explicit counterion but without ex
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plicit solvent particles, using Monte Carlo@9#. Their model
polyelectrolyte gel displays a large swelling capacity co
pared to the corresponding uncharged polymer network.

To the best of our knowledge this work is a first attempt
study the swelling behavior of a model polyelectrolyte g
with explicit counterions and explicit solvent particles, usi
a three-dimensional molecular dynamics simulation meth
Each network bead carries a partial chargeq* and the cor-
responding dissociable counterion charge2q* . The total
system is neutral. The explicitly considered solvent partic
interact via a Stockmayer potential@10#. The simulated
swelling ratio of the network exhibits a broad peak as a fu
tion of q* at Tr* 5T* /Tc* 51.05 andPr* 5P* /Pc* 51.0. Tc*
and Pc* are the critical temperature and the critical press
of the Stockmayer solvent, respectively, with the dipole m
mentsm* 51.0, A2.0, A3.0, and 2.0. We show that asq*
increases, there is a progressive condensation of counter
Such a condensation will reduce the electrostatic repuls
between network charges, which initially tends to increa
the swelling ratio, so that the configuration entropy of t
network strands may finally reduce the swelling. The re
dence time of the counterions in the vicinity of the netwo
beads is calculated, showing that the counterions stron
couple to the polyelectrolyte network after condensat
takes place. Additional simulations for three different cha
strengths (q* 50.5, 3.5, and 8.6! show a complicated swell
ing behavior at both subcritical and supercritical tempe
tures form* 251.0.

II. SIMULATION METHOD
AND MODEL CONSTRUCTION

In this study, we apply our recently developed ‘‘two-box
particle transfer’’ molecular dynamics simulation metho
This method, which is discussed in detail in Refs.@11–13#, is
suitable for studying the swelling behavior of model polym
networks under varying thermodynamic conditions includi
solvent dynamics. In brief, two simulation boxes are coup
together; one is the network box containing counterions

i-
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Z.-Y. LU AND R. HENTSCHKE PHYSICAL REVIEW E67, 061807 ~2003!
solvent particles, whereas the other contains pure solv
These two boxes can exchange solvent particles during
simulation. The exchange is controlled by decreasing the
vent chemical potential difference between the boxes at
same average temperature and pressure.

In this study, we model the solvent as a Stockmayer flu
i.e., the potential energy between two solvent particles is

Um~r i j ,mi ,mj !54«F S s

r i j
D 12

2S s

r i j
D 6G1

1

4pe0r i j
3

3Fmi•mj2
3~r i j •mi !~r i j •mj !

r i j
2 G , ~1!

where r i j 5ur i2r j u is the distance between two interactio
centers,« and s are Lennard-Jones parameters, which
equal to one in the following,mi is the point-dipole momen
vector of particlei, ande0 is the permittivity of vacuum.

The polyelectrolyte network used in this work, a sket
including the counterions and the Stockmayer solven
shown in Fig. 1, possesses the same cubic symmetry as
before in the case of ‘‘neutral’’ network~cf., Refs.@13,14#!.
In this coarse-grained model, every second interaction ce
along the chain is a crosslink. A partial chargeq* is assigned
to each network bead. Correspondingly,2q* is assigned to
every counterion. Overall, the system is neutral. The aste
means thatq is scaled viaq* 5q/A4pe0s«. The interac-
tions between these charged particles (Uc) are of Lennard-
Jones type (ULJ) with an added Coulomb part (Uq):

Uc5ULJ1Uq , ~2!

ULJ~r i j !54«F S s

r i j
D 12

2S s

r i j
D 6G , ~3!

Uq~r i j !5
qiqj

4pe0r i j
. ~4!

For the network beads and the counterions, we also us«
5s51. Note that, in the network box, there are also int
actions between the solvent and the charged particles in
dition to solvent-solvent interactions. The interaction b

FIG. 1. A sketch of the polyelectrolyte network~gray! with
counterions~black! and the point dipole solvent used in the sim
lations.
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tween solvent and charged particles is described also by
~1!, where the dipole-dipole term is replaced by the char
dipole term given by

Uqm~r i j ,qi ,mj !5
qi~r i j •mj !

4pe0r i j
3

. ~5!

Periodic boundary conditions are applied to both simu
tion boxes separately. In this work, the long-range elec
static interactions~including charge-charge, charge-dipol
and dipole-dipole interactions! are calculated via the Ewald
summation@15–17#. An elegant description of the Ewal
summation, including the extension to atomic dipoles a
higher-order multipoles, is given by Smith@18#. A discussion
of how to treat polarizability can be found in Ref.@19#. In its
basic version, the computational effort of this method
creases proportional toN2, whereN is the number of inter-
action centers. However, choosing optimized parameters
result in an orderN3/2 algorithm @16,20#. An alternative al-
gorithm, which is called particle mesh Ewald~PME! summa-
tion, was developed by Dardenet al. @21#. This very efficient
N ln(N) algorithm may be further revised to calculate t
gradients analytically, which significantly improves the acc
racy @22#. An extension, including fixed and induced dipol
interactions, was worked out by Toukmajiet al. @23#. The
basic idea of PME is to split the electrostatic potential in
two parts. The first part converges fast enough and can
calculated via the normal cutoff method in the real spa
The second part is calculated in the reciprocal space via
fast Fourier transform on a mesh to speed up the calculat
In our case, the electrostatic interaction energy calculate
the real space,Udir , is given by

Udir5
1

2 (
i , j 51

N

~qi1mi•“ i !3~qj2mj•“ j !
erfc~ar i j !

r i j
,

~6!

wherea is the Ewald parameter and erfc(x) is the comple-
mentary error function. The reciprocal energyUrec is given
by

Urec5
1

2pV (
mÞ0

exp~2p2a2m2!

m2
S~m!S~2m!, ~7!

where the structure factorS(m) can be written as

S~m!5(
j 51

N

~qj12p i mj•“ j !exp~2p im•r j !. ~8!

Here,V is the volume of a simulation box andm is a recip-
rocal lattice vector. In addition, there is a self-energyUsel f ,
due to the interactions of charges and dipoles with the
selves, which must be removed. This self-term is given b

Usel f52
a

Ap
(

j

N S qj
21

2a2

3
umj u2D . ~9!
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COMPUTER SIMULATION STUDY ON THE SWELLING . . . PHYSICAL REVIEW E67, 061807 ~2003!
In this work, we model short-range interactions via Lenna
Jones potentials using a cutoff of 2.9, and long-range in
actions, Ue5Udir1Urec1Usel f , are calculated via the
smooth PME method@23#.

In addition to the equations of translational motion, whi
are the same as in Ref.@11#, we also need to consider th
equations of rotational motion for the point dipoles. Defini
mj5msj with usj u51 andGj52“sj

Ue , we have@15,24#

ṡj5uj ~10!

and

u̇j5Gj
'/I j1l jsj , ~11!

whereuj is the time derivative ofsj , Gj
'5Gj2(Gj•sj )sj , I j

is the moment of inertia of point dipolej, andl j is used to
constrain the length of the dipole vector to a constant va
The translational and rotational equations of motion are
merically solved using a leap-frog algorithm@15#. Constant
pressure and temperature are maintained via the Beren
barostat and thermostat@25# applied to the translational de
grees of freedom. Note that, because the translation and
rotation of a dipole are coupled, their respective equilibriu
temperatures are the same.

During the simulation, it is important to calculate the so
vent chemical potential in each box accurately. If the den
of the system is not too high, Widom’s test particle meth
@26# is a good choice. In ourN-P-T ~constant total numbe
of particles, constant pressure, and temperature! simulations,
the solvent chemical potential is calculated via Shing a
Chung’s version of the test particle method including t
fluctuation of volume@27#. However, note that Berendsen
method does not produceN-P-T-ensemble average. Neve
theless, the error isO(1/N) and should not affect our result
significantly.

At the beginning of each simulation run, the network b
contains 108 nontransferable network beads, an equal n
ber of counterions, and 192 solvent particles. The pure
vent box contains 700 solvent particles. The integration ti
step isDt53.8031024 in Lennard-Jones units. To relax th
unfavorable network structure, we execute 105 time steps
under N-V-T conditions without allowing solvent transfe
Subsequently theNPT simulation is started, allowing sol
vent exchange. Typical simulation runs range from
3106 to 2.03106 time steps. The solvent chemical potent
is calculated continuously using Widom test particle meth
Each chemical potential value is based on 23103 simulation
time steps; for every configuration, 20 test solvent partic
are generated at random positions in each of the boxes~with
randomly orientated dipole vectors! @11#. A solvent particle
will be transferred depending on the difference of the solv
chemical potential between the two simulation boxes.

III. RESULTS AND DISCUSSION

Before we discuss the results pertaining to the swell
behavior of the network, we want to list a number of chec
run to test the algorithm. First, we calculate the Madelu
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constantM of an fcc type lattice and compare our result
the value in Ref.@28#. Our calculation is based on a cryst
cell containing 256 ion pairs using periodic boundary con
tions. Figure 2 shows the dependence ofM on the Ewald
parametera. Note that, in a wide region ofa values (a
50.35–0.65 Å21), the calculated Madelung constant, i.e
1.747565, coincides with the literature value. The lowest
ceptablea value, i.e.,a50.35 Å21, is used in the following
in order to minimize the computational effort.

We also calculate the excess chemical potential for a p
Stockmayer fluid and compare our results with the publish
data. In this case, 108 point-dipole particles~with m* 2

51.0) are distributed in a simulation box kept at consta
density r* 50.8 and temperatureT* 51.35. The excess
chemical potential is calculated via Widom’s method duri
the simulation. The entire run consists of 3.03105 time
steps. At each time step, 20 test particles are generate
random positions and with random orientations. In this p
per, to distinguish the chemical potential from the notati
used for the dipole moment,c* denotes the chemical poten
tial, andcex* denotes the excess chemical potential. Figur
shows the simulated excess chemical potentialcex* based on
the cumulative average of exp@bcex* (t)# vs timet. Here,cex* (t)

FIG. 2. The dependence of the Madelung constantM on the
Ewald parametera. Symbols: this work; dotted line: literature
value taken from Ref.@28#.

FIG. 3. The cumulative average of the simulated excess che
cal potential atT* 51.35, andr* 50.8. The dotted line correspond
to the literature value obtained from Ref.@29#.
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Z.-Y. LU AND R. HENTSCHKE PHYSICAL REVIEW E67, 061807 ~2003!
denotes the instantaneous value, andb51/kBT* . We obtain
bcex* 520.54 in comparison tobcex* 520.58 obtained from
a Monte Carlo simulation@29#.

Using the two-box–particle transfer method, we also c
culate the gas-liquid phase coexistence curve for a p
Stockmayer fluid. In this simulation, 620 point dipole
(m* 251.0) are used, and the cutoffr c* is 2.9. The resulting
coexistence curve is shown in Fig. 4. The values used
comparison are taken from Ref.@30#. By fitting the coexist-
ence curve to a power lawr l2rg5B(T2Tc)

0.32 @16#, where
0.32 is the approximate order parameter exponent for th
dimensional Ising systems andB is an adjustable paramete
we obtain the critical temperature and density (Tc*
51.42,rc* 50.35). For comparison,Tc* 51.41 andrc* 50.30
are the values obtained in Ref.@30#. Although there is a smal
systematic deviation between our coexistence curve and
one in Ref.@30# ~which may arise due to the different syste
sizes and different cutoffs in the two simulations!, the result-
ing critical temperatures are in good accord. Therefore, in
following simulations, we use the published critical tempe
tures from Ref.@30# for m* 251.0, 2.0 and from Ref.@31# for
m* 253.0, 4.0 to scale our temperatures to avoid tim
consuming coexistence curve calculations.

Now we consider the full system, i.e., one box contain
the network plus solvent and the second box containing
vent only. In Fig. 5, we show a typical approach to equil
rium. At Tr* 50.96 andPr* 52.16, the chemical potentials o
the dipole solvent withm* 251.0 are calculated via Widom’s
test particle method in the network and the solvent box. F
ure 5~a! shows that the exchange of solvent particles lead
the same solvent chemical potential in both boxes. Note
bc* in the network box fluctuates more strongly compar
to the solvent box. Figure 5~b! shows how the solvent num
ber densitiesr* evolving, analogous to the chemical pote
tials.

The network swelling ratio is defined asQ5V/V0, where
V is the equilibrium volume of the swollen network andV0 is
the equilibrium volume of the ‘‘dry’’ network under the sam
thermodynamic conditions. Here, the ‘‘dry’’ network con
tains the polyelectrolyte including the counterions. It is

FIG. 4. The gas-liquid coexistence curve for a pure Stockma
fluid with m* 251.0. Triangles: this work; squares: Smitet al. @30#.
Solid symbols denote the respective critical points.
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teresting to see how the charge strength of the netw
changes its swelling behavior. Thus, close to the solv
critical point (Tr* 51.05 andPr* 51.0), we simulateQ vs q*
for different dipole strengths, i.e.,m* 251.0, 2.0, 3.0, and
4.0. The results are shown in Fig. 6. With the increas
charge strength,Q shows a broad maximum. This maximu
decreases and slightly broadens with increasing solven
pole strength, which is due to an increased attendant scr
ing of the charges resulting from the larger solvent dip
moment. In the cases of polyelectrolyte chains, Winkleret al.
@6# show that by increasing the parameterl5qiqj /4p«es,
which is related to the Bjerrum length, the radius of gyrati
of the chains also exhibits a maximum. The authors attrib
this to counterion condensation according to the interpre
tion in Ref. @4#. Our simulation results show that polyele
trolyte networks behave similarly, i.e., initially, the increa
of q* leads to an increasing repulsion between charges fi
on the network and thus to an increasingQ. When the coun-
terions condense against the polymer network, the repul
is diminished by screening, and the stretching of the netw
segments is entropically reduced. To verify this, we calcul
the radial pair distribution functiong12(r ) between network
charges and counterions form* 251.0. The maximum of the
nearest neighbor peakgmax

12 (r ) and the corresponding pea
positionr max vs the network charge strengthq* are shown in
Fig. 7~a!. At low q* , bothgmax

12 (r ) andr max vary nonmono-
tonically. However, the changes are quite small. W

r

FIG. 5. A typical approach to equilibrium shown atTr* 50.96
and Pr* 52.16. Solid line: network box; dashed line: bulk dipo
solvent.
7-4
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COMPUTER SIMULATION STUDY ON THE SWELLING . . . PHYSICAL REVIEW E67, 061807 ~2003!
increasing charge strength,gmax
12 (r ) increases monotonically

and the correspondingr max decreases from roughly 1.1s to
1.0s. Because gmax

12 (r ) describes the extent of ion
counterion pair formation and the correspondingr max is the
average distance of the nearest counterions from the netw
beads, we find from Fig. 7~a! that the counterions begin t
condense on the charged network at an intermediateq*
value, and this condensation becomes stronger with incr
ing charge strength. Figure 7~b! shows the number of coun
terionsn within a distance 1.1s of the network beads, which
also increases with increasingq* ~at large charge strength!.
Thus, Fig. 7 supports our above interpretation.

Another measure of counterion condensation is their m
bility. The dynamics of the counterions near the netwo
charges is reflected by their residence time, which was
introduced by Impeyet al. @32#. First, we define a simple
function P(t,t0), which is one if the counterion reside
within a distance 1.1s of the network bead at botht0 and
t01t. Otherwise, it is zero. The average number of coun
rions residing in the vicinity of a network bead atta and at
ta1t, n(t) is

n~ t !5
1

Nt2t

1

Nnetwork
(
a51

Nt2t

(
i 51

Nnetwork

(
j 51

Ncounterion

Pi j ~ t,ta!,

~12!

whereNt is the total number of time steps,Nnetwork is the
number of network beads in the system, andNcounterion is
the number of counterions.n(t) decays exponentially, i.e.
n(t)5n(0)exp(2t/t), wheret is the residence time. Figur
8 shows the calculatedt for the counterions vsq* in the
case ofm* 251.0 at Tr* 51.05 andPr* 51.0. Note thatt

FIG. 6. The swelling ratio a of the network vs charge stren
q* at Tr* 51.05 andPr* 51.0. The different curves are for differen
dipole strengths. Squares:m* 251.0; circles: m* 252.0; up tri-
angles:m* 253.0; down triangles:m* 254.0.
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exhibits an overall increase with increasingq* , which again
indicates that the counterions strongly couple to the char
network beads.

In the following, we compare the swelling behavior of o
polyelectrolyte network under supercritical and subcritic
conditions of the dipole solvent withm* 251.0. The swelling
ratios Q for networks with three different charge strengt
(q* 50.5, 3.5, and 8.6! are shown in Fig. 9 forTr* 50.96 and
Tr* 51.91. At Tr* 51.91, all networks swell monotonically
with the increasing pressure. At low pressure, the netw
with high charge strength swells more strongly than that w
low charge strength, whereas at high pressure the netw
with high charge strength (q* 58.6) swells less than tha
with smaller charge strength (q* 53.5). At Tr* 50.96, the
network with q* 50.5 shows a broad peak in the swellin
curve. For the larger charge strengths, the network sw
monotonically. Note that forq* 53.5, the swelling is much
more pronounced than forq* 50.5 and 8.6. Thus, atTr*
50.96, by increasing the charge strength, the swelling ra

h

FIG. 7. ~a! The height of the nearest neighbor peak of the rad
pair distribution functiongmax

12 (r ) and the corresponding radial pea
position, r max vs charge strengthq* . ~b! The average number o
counterions within a distance 1.1s of the central network beadn vs
charge strengthq* .
7-5
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Z.-Y. LU AND R. HENTSCHKE PHYSICAL REVIEW E67, 061807 ~2003!
exhibits a peak at aroundq* 53.5, which is similar to the
results obtained atTr* 51.05 ~cf. Fig. 6!.

Figure 10 shows a comparison between the swelling
havior of the polyelectrolyte network and the uncharg
Lennard-Jones network under the same thermodynamic
ditions. The data for the uncharged Lennard-Jones netw
are taken from Ref.@11#. For both temperatures studied he
(T* 52.70 andT* 51.35), the network with intermediat
charge strength i.e.,q* 53.5 ~which is near to the peak in

FIG. 8. The reduced residence timet, expressed in Lennard
Jones units, vs charge strengthq* .

FIG. 9. Swelling ratioQ vs Pr* obtained under subcritical an
supercritical conditions. Solid symbols:Tr* 51.91; hollow symbols:
Tr* 50.96. Squares:q* 50.5; circles:q* 53.5; triangles:q* 58.6.
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Fig. 6!, swells monotonically with increasing pressure. F
T* 52.70, the pure Lennard-Jones network swells monoto
cally, whereas forT* 51.35 it exhibits a peak in the swelling
curve with increasing pressure. The overall swelling ratios
the polyelectrolyte network are always larger than those
the neutral polymer network, which coincides with the res
in Ref. @9#. Note that, in the simulations of the polyelectr
lyte network, we use a dipole solvent withm* 251.0. There-
fore, T* 51.35 corresponds toTr* 50.96, andT* 52.70 cor-
responds toTr* 51.91. By combining Figs. 9 and 10, we fin
that the network with the low charge strength,q* 50.5, has a
similar swelling behavior as the neutral Lennard-Jones n
work. Thus, a weak charging does not significantly chan
our networks’ swelling behavior. However, the network wi
the high charge strength, i.e.,q* 58.6, at which counterion
condensation and the attendant screening occur, show
similar swelling behavior as the network withq* 53.5 but
with diminished swelling ratios.

IV. CONCLUSION

In a series of previous papers@11–13#, we have investi-
gated the swelling of uncharged model polymer netwo
using both the computer simulations and the lattice theory
this work, we have extended our simulation methodology
include polyelectrolyte networks in contact with an explic
polar solvent. The interactions, Lennard-Jones p
monopole-monopole, monopole-dipole, and dipole-dipole
teractions, were kept simple to study the main effects du
changing the charge strengthq* of the polyelectrolyte as
well as the dipole strength of the Stockmayer solvent. T
molecular dynamics simulations, which were carried out

FIG. 10. Comparison of the swelling behavior between the po
electrolyte network and the pure Lennard-Jones network. S
squares:q* 53.5, T* 51.35; solid circles:q* 53.5, T* 52.70; hol-
low squares: pure LJ-system,T* 51.35; hollow circles: pure
Lennard-Jones~LJ!, T* 52.70.
7-6
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COMPUTER SIMULATION STUDY ON THE SWELLING . . . PHYSICAL REVIEW E67, 061807 ~2003!
fixed temperature and pressure, show a maximum of
swelling ratio as a function ofq* . This effect, which results
due to a competition between electrostatic repulsion and
network conformational entropy, is also known from t
study of ordinary polyelectrolytes. The effect is reduced
the dipole moment of the Stockmayer fluid is increased
addition, we have calculated the residence time of the co
terions, which shows that the counterions are coup
strongly to the charged network bead after condensation
nally, we have simulated the swelling ratio as a function
s
-

:

n

06180
e

e

f
n
n-
d
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f

pressure at two temperatures slightly below and above
critical solvent temperature. This work shows that our sim
lation technique is well suited to study the model polyele
trolyte network even including explicit solvent.

ACKNOWLEDGMENT

We are grateful for valuable discussions with Dr. Chr
tian Holm.
e,

m.

Di-

w,

s.

m.
@1# Advances in Polymer Sciences, edited by K. Dusek~Springer-
Verlag, New York, 1993!, Vol. 109.

@2# Advances in Polymer Sciences, edited by K. Dusek~Springer-
Verlag, New York, 1993!, Vol. 110.

@3# F. L. Buchholz and N. A. Peppas, inACS Symposium Serie,
edited by M. J. Comstock~American Chemical Society, Wash
ington, DC, 1994!, Vol. 573.

@4# M.J. Stevens and K. Kremer, J. Chem. Phys.103, 1669~1995!.
@5# U. Micka, C. Holm, and K. Kremer, Langmuir15, 4033

~1999!.
@6# R.G. Winkler, M. Gold, and P. Reineker, Phys. Rev. Lett.80,

3731 ~1998!.
@7# D.P. Aalberts, J. Chem. Phys.104, 4309~1996!.
@8# F.A. Escobedo and J.J. de Pablo, Phys. Rep.318, 85 ~1999!.
@9# S. Schneider and P. Linse, Eur. Phys. J. E8, 457 ~2002!.

@10# W.H. Stockmayer, J. Chem. Phys.9, 398 ~1941!.
@11# Z.-Y. Lu and R. Hentschke, Phys. Rev. E63, 051801~2001!.
@12# Z.-Y. Lu and R. Hentschke, Phys. Rev. E65, 041807~2002!.
@13# Z.-Y. Lu and R. Hentschke, Phys. Rev. E66, 041803~2002!.
@14# E.M. Aydt and R. Hentschke, J. Chem. Phys.112, 5480~2000!.
@15# M. P. Allen and D. J. Tildesley,Computer Simulation of Liq-

uids ~Oxford University Press, Oxford, 1989!.
@16# D. Frenkel and B. Smit,Understanding Molecular Simulation

From Algorithms to Applications~Academic, New York,
1996!.

@17# D. C. Rapaport,The Art of Molecular Dynamics Simulatio
~Cambridge University Press, Cambridge, 1997!.
@18# W. Smith, CCP5 Info. Quart.4, 13 ~1982!.
@19# T.M. Nymand and P. Linse, J. Chem. Phys.112, 6152~2000!.
@20# N. Karasawa and W.A. Goddard, J. Phys. Chem.93, 7320

~1989!.
@21# T. Darden, D. York, and L. Pedersen, J. Chem. Phys.98, 10

089 ~1993!.
@22# U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Le

and L.G. Pedersen, J. Chem. Phys.103, 8577~1995!.
@23# A. Toukmaji, C. Sagui, J. Board, and T. Darden, J. Che

Phys.113, 10 913~2000!.
@24# K. Singer, A. Taylor, and J.V.L. Singer, Mol. Phys.33, 1757

~1977!.
@25# H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A.

Nola, and J.R. Haak, J. Chem. Phys.81, 3684~1984!.
@26# B. Widom, J. Chem. Phys.39, 2808~1963!.
@27# K.S. Shing and S.T. Chung, J. Phys. Chem.91, 1674~1987!.
@28# C. Kittel, Introduction to Solid State Physics~Wiley, New

York, 1996!.
@29# K.K. Han, J.H. Cushman, and D.J. Diestler, J. Chem. Phys.96,

7867 ~1992!.
@30# B. Smit, C.P. Williams, E.M. Hendriks, and S.W. de Leeu

Mol. Phys.68, 765 ~1989!.
@31# M.E. van Leeuwen, B. Smit, and E.M. Hendriks, Mol. Phy

78, 271 ~1993!.
@32# R.W. Impey, P.A. Madden, and I.R. McDonald, J. Phys. Che

87, 5071~1983!.
7-7


