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Computer simulation study on the swelling of a polyelectrolyte gel by a Stockmayer solvent
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The swelling of a model polyelectrolyte gel is studied via three-dimensional molecular dynamics simula-
tions, taking into account the counterions and the solvent explicitly. Each network bead carries ag¢harge
The counterion charge is q*, and thus the total system is neutral. The solvent is modeled via a Stockmayer
fluid, i.e., each solvent particle is a point dipole plus a Lennard-Jones interaction center. A “two-box—particle
transfer” simulation method is applied to calculate the swelling ratio of the network as well as the counterion
mobility. The swelling of the network shows a broad maximum as a functiagi adt T} = T*/T% = 1.05 and
P} =P*/P%f=1.0. Here,T% andP} are the critical temperature and the critical pressure of the pure Stock-
mayer solvent, respectively, with dipole moments givenutiy=1.0, 2.0, 3.0, and 4.0. The residence time of
the counterions is calculated, showing a strong coupling to the charged network(beadsnsationas q*
increases. Additional simulations at three different charge strerigéhsq* =0.5, 3.5, and 8.6illustrate the
complicated swelling behavior of the network under supercritical and subcritical conditions.
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I. INTRODUCTION plicit solvent particles, using Monte Car]8]. Their model
polyelectrolyte gel displays a large swelling capacity com-
Polyelectrolytes, charged polymers which can dissociat@ared to the corresponding uncharged polymer network.
ions in polar solvent, have many industrial applicatiéasg., To the best of our knowledge this work is a first attempt to
diapers and play an important role in the biological sciencesstudy the swelling behavior of a model polyelectrolyte gel,
(e.g., DNA and proteins[1-3]. Theoretical prediction of With explicit counterions and explicit solvent particles, using
polyelectrolyte behavior is more difficult than in the case ofa three-dimensional molecular dynamics simulation method.
neutral polymers. Due to the long-range nature of electroEach network bead carries a partial chagfeand the cor-
static interactions and the existence of counterions, polyeledesponding dissociable counterion chargg*. The total
trolyte systems possess several different length and tim8ystem is neutral. The explicitly considered solvent particles
scales. Therefore, analytic theory or scaling auguments béateract via a Stockmayer potential0]. The simulated
come very complicated4]. Computer simulations, even swelling ratio of the network exhibits a broad peak as a func-
though these too are more difficult in the case of polyelection of g* at Ty =T*/T =1.05 andPy =P*/P{ =1.0. T}
trolytes, can serve as an alternative tool to investigate corand P} are the critical temperature and the critical pressure
formational and dynamical properties on a nanoscopic levedf the Stockmayer solvent, respectively, with the dipole mo-
[4-6]. mentsu* =1.0, /2.0, 3.0, and 2.0. We show that ag
Polyelectrolytes can form networks which swell or shrinkincreases, there is a progressive condensation of counterions.
in response to the change of thermodynamic conditionsSuch a condensation will reduce the electrostatic repulsion
Compared to the neutral network, there are new factors, sudbetween network charges, which initially tends to increase
as network charge density and the polarity of the solventihe swelling ratio, so that the configuration entropy of the
which are essential to the swelling. Because polyelectrolyt@etwork strands may finally reduce the swelling. The resi-
networks are so complicated, detailed studies on the micradence time of the counterions in the vicinity of the network
scopic level are scarce. The swelling of a two-dimensionabeads is calculated, showing that the counterions strongly
polyelectrolyte gel was simulated by Aalbef#d. His model,  couple to the polyelectrolyte network after condensation
which yields a first-order phase transition, is highly simpli- takes place. Additional simulations for three different charge
fied, and the ionic groups are not simulated explicitly but astrengths ¢* =0.5, 3.5, and 8)6show a complicated swell-
counterion pressure is introduced instead to mimic the osing behavior at both subcritical and supercritical tempera-
motic pressure due to the counterions. However, threetures foru*2=1.0.
dimensional simulation studies including the ionizable
groups in the network, explicit counterions, and explicit sol-
vent are needed, because this kind of detail is necessary to
generate a realistic gel behavif8]. Schneider and Linse
simulated the swelling of a three-dimensional defect-free In this study, we apply our recently developed “two-box—
polyelectrolyte gel, with explicit counterion but without ex- particle transfer” molecular dynamics simulation method.
This method, which is discussed in detail in R¢fisl—13, is
suitable for studying the swelling behavior of model polymer
*Permanent address: Institute of Theoretical Chemistry, Jilin Uninetworks under varying thermodynamic conditions including
versity, 130023 Changchun, China. solvent dynamics. In brief, two simulation boxes are coupled
TAuthor to whom correspondence should be addressed. together; one is the network box containing counterions and

Il. SIMULATION METHOD
AND MODEL CONSTRUCTION
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— [ o%% "o, tween solvent and charged particles is described also by Eq.
* 0. B =T % | (1), where the dipole-dipole term is replaced by the charge-
o s *L0|2 o . .
e‘éﬁtﬁzgé# o dipole term given by
o 0 Pe I Ollele 0F
.. '.-.By.é;’%.e .. ngc : . CI(I'M)
PO e N » g o) = T

The point dipole solvent

Periodic boundary conditions are applied to both simula-
tion boxes separately. In this work, the long-range electro-
static interactiong(including charge-charge, charge-dipole,

FIG. 1. A sketch of the polyelectrolyte networigray) with and dipqle—dipole interactiongre caIcu_Iat_ed via the Ewald
counterionsiblack) and the point dipole solvent used in the simu- SUmmation[15-17. An elegant description of the Ewald
lations. summation, including the extension to atomic dipoles and
higher-order multipoles, is given by Smith8]. A discussion

solvent particles, whereas the other contains pure solvenf how to treat polarizability can be found in Ré19]. Iniits
These two boxes can exchange solvent particles during tHeasic version, the computational effort of this method in-
simulation. The exchange is controlled by decreasing the sokr€ases proportional #?, whereN is the number of inter-
vent chemical potential difference between the boxes at th@ction centers. However, choosing optimized parameters will
same average temperature and pressure. result in an ordeN®? algorithm[16,20.. An alternative al-

In this study, we model the solvent as a Stockmayer fluidgorithm, which is called particle mesh EwdRIME) summa-

i.e., the potential energy between two solvent particles is tion, was developed by Darden al.[21]. This very efficient
N In(N) algorithm may be further revised to calculate the

12 6 gradients analytically, which significantly improves the accu-
o o 1 ; : ) ) X .
U, (rij  mi ) =4e (_) _(_> + 3 racy[22]. An extension, including fixed and induced dipolar
Fij Fij Amegrj] interactions, was worked out by Toukmat al. [23]. The

basic idea of PME is to split the electrostatic potential into
1) two parts. The first part converges fast enough and can be
' calculated via the normal cutoff method in the real space.
The second part is calculated in the reciprocal space via the
whererij=|ri—rj| is the distance between two interaction fast Fourier transform on a_m_esh to s_peed up the calculatio_n.
centers,e and o are Lennard-Jones parameters, which ardn our case, the elegtrogtatlc interaction energy calculated in
equal to one in the followingy; is the point-dipole moment the real spacelJq;; , is given by
vector of particlel, and ey is the permittivity of vacuum. N
The polyelectrolyte network used in this work, a sketch (g V)X (g _.V_)erfc(arij)
including the counterions and the Stockmayer solvent is i1 Qi pi- Vi) 2 (G -V Fij '
shown in Fig. 1, possesses the same cubic symmetry as used (6)
before in the case of “neutral” networkcf., Refs.[13,14).
In this coarse-grained model, every second interaction cent&yhere « is the Ewald parameter and erf)(is the comple-
along the chain is a crosslink. A partial chaigieis assigned mentary error function. The reciprocal energy,. is given
to each network bead. Correspondinglyy* is assigned to by
every counterion. Overall, the system is neutral. The asterisk

3(rij- i) (ij - py)
Mi'ﬂj_T
ij

X

1
Udir=5

means thag is scaled viaq*zq/\/_47-reoas. The interac- 1 ex — m2a?m?)
tions between these charged particlek) are of Lennard- Uf“:zwv 5 S(m)S(—m), (7)
Jones type Y ;) with an added Coulomb part);): m=#0 m
Ue=U+Uq, (2)  Where the structure fact@(m) can be written as
o\12 [ 5\6 N _ )
Ups(rij)=4s (_ _(_) , 3) S(m)=j21 (0 +2mi - Vy)exp(2mim-r)). (8
rij I’ij =
q.q; Here,V is the volume of a simulation box amd is a recip-
iM]

Uqg(rij)= P (4)  rocal lattice vector. In addition, there is a self-enetdy s,
ol j due to the interactions of charges and dipoles with them-

i selves, which must be removed. This self-term is given by
For the network beads and the counterions, we alsosuse

=o=1. Note that, in the network box, there are also inter- N 242

actions between the solvent and the charged particles in ad- Uonji= — el > gP+ i| |2 9
.. . . ) . self . qJ 3 M .

dition to solvent-solvent interactions. The interaction be- N
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In this work, we model short-range interactions via Lennard- 1.75
Jones potentials using a cutoff of 2.9, and long-range inter- 1749 |
actions, Uo=Uy;, +U,.c+Uge s, are calculated via the
smooth PME metho@23]. 1748 1 e ®
In addition to the equations of translational motion, which 1.747 |
are the same as in Rdfl1], we also need to consider the s 1746 |
equations of rotational motion for the point dipoles. Defining
M= s with |s]=1 andGJ-:—VSer, we have[15,24 1.745 1
1744 | ®
S =U; (10) 1.743 |
1.742 : :
and 0.2 0.4 0.6 0.8
o
L
ui=Gj/lj+\js, (12)

FIG. 2. The dependence of the Madelung constdnon the
Whereuj is the time derivative Oéj, GjL=Gj—(Gj~§)Sj, |j Ewald parametere. Symbols: this work; dotted line: literature

is the moment of inertia of point dipole and); is used to value taken from Ref.28].
constrain the length of the dipole vector to a constant Valueéonstantl\/l of an fec tvpe lattice and compare our result to
The translational and rotational equations of motion are NUL o Value in Ref[28] >(l)pur calculation is bzgsed on a orvstal
merically solved using a leap-frog algorithih5]. Constant I taining 256 oy : . iodic bound Y di-
pressure and temperature are maintained via the Berendsgﬁ containing lon pairs using periodic boundary cona
barostat and thermostf25] applied to the translational de- lons. Figure 2 shows the depgndenc_eM)fon the Ewald
grees of freedom. Note that, because the translation and fpgrametera. E?te that, in a wide region of values @.
rotation of a dipole are coupled, their respective equilibrium_ 0.35-0.65 ; ) the .calcula.ted Madelung constant, i.e.,
temperatures are the same. 1.747565, comudes with the Ilt_elra_ture vall_Je. The Iowz_est ac-
During the simulation, it is important to calculate the sol- ceptablex value, i.e..a=0.35 A7, is used in the following
vent chemical potential in each box accurately. If the densit)}n order to minimize the computatlongl effort. .
of the system is not too high, Widom’s test particle method We also caIc_uIate the excess chemical pqtenﬂal for apure
[26] is a good choice. In ouN-P-T (constant total number Stockmayer_ fluid and compare our results V\."th the puEIzlshed
of particles, constant pressure, and temperasimulations, dafa. In th|§ case, 198 po_lnt—dlp'ole particlesith
the solvent chemical potential is calculated via Shing and_ 1.0) arg distributed in a S|mulat|8n box kept at constant
Chung's version of the test particle method including thedensity p*=0.8 ‘and temperaturd =1.35. The excess
fluctuation of volume27]. However, note that Berendsen’s chemical potential is calculated via Widom’s method during

method does not produdé-P-T-ensemble average. Never- trt1e sm;\t:latlor;]. tThe eintlrezcr)u? ionSI?tsl of 8.00° t|met d at
theless, the error iI©(1/N) and should not affect our results steps. At each ume step, est particles are genérated a
significantly. random positions and with random orientations. In this pa-

At the beginning of each simulation run, the network boxPer to distingpish the chenlical potential from t_he notation
contains 108 nontransferable network beads, an equal nurf‘l,'—Sed for tDe dipole moment; denotes. the cheml_cal poten-
ber of counterions, and 192 solvent particles. The pure solf@ andcg, denotes the excess chemical potential. Figure 3
vent box contains 700 solvent particles. The integration time&hows the simulated excess chemical poterfialbased on
step isAt=3.80x 10 “ in Lennard-Jones units. To relax the the cumulative average of eiffee,(t)] vs timet. Here,cg,(t)
unfavorable network structure, we execute® ne steps
under N-V-T conditions without allowing solvent transfer. 1
Subsequently th&PT simulation is started, allowing sol-
vent exchange. Typical simulation runs range from 1.0
X 10° to 2.0x 10° time steps. The solvent chemical potential
is calculated continuously using Widom test particle method.
Each chemical potential value is based onZ0® simulation N
time steps; for every configuration, 20 test solvent particles =
are generated at random positions in each of the baxitis
randomly orientated dipole vectgrgll]. A solvent particle -05 |
will be transferred depending on the difference of the solvent
chemical potential between the two simulation boxes.

0.5

-1

] 100 200 300
IIl. RESULTS AND DISCUSSION 103 (Time steps)

Before we discuss the results pertaining to the swelling FIG. 3. The cumulative average of the simulated excess chemi-
behavior of the network, we want to list a number of checkscal potential af™* =1.35, andp* =0.8. The dotted line corresponds
run to test the algorithm. First, we calculate the Madelungo the literature value obtained from RER9].
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FIG. 4. The gas-liquid coexistence curve for a pure Stockmayer Eet""ork _________
S %2 . o . . ulk solvent
fluid with ©*“=1.0. Triangles: this work; squares: Sraital. [30]. 0.6 [
Solid symbols denote the respective critical points.
05
denotes the instantaneous value, @d1l/kgT*. We obtain o4
Bces,=—0.54 in comparison t@cg,= —0.58 obtained from e
a Monte Carlo simulatiofi29]. 03 L
Using the two-box—particle transfer method, we also cal-
culate the gas-liquid phase coexistence curve for a pure 0.2 F
Stockmayer fluid. In this simulation, 620 point dipoles -
*2: . . 01 1 1 1 Il 1
(m : 1.0) are use_d, and the. cutqﬁf is 2.9. The resulting 0 400 800 1200 1600 2000
coexistence curve is shown in Fig. 4. The values used for (b) 10° (Time steps)

comparison are taken from R¢80]. By fitting the coexist-
ence curve to a power lap( — py=B(T—T.)>**[16], where FIG. 5. A typical approach to equilibrium shown &f =0.96
0.32 is the approximate order parameter exponent for threemd P* =2.16. Solid line: network box; dashed line: bulk dipole
dimensional Ising systems amlis an adjustable parameter, solvent.
we obtain the critical temperature and density; (
=1.42p* =0.35). For comparisorT} =1.41 andp* =0.30 teresting to see how the charge strength of the network
are the values obtained in REB0]. Although there is a small changes its swelling behavior. Thus, close to the solvent
systematic deviation between our coexistence curve and thgitical point (T =1.05 andPy =1.0), we simulate vs g*
one in Ref[30] (which may arise due to the different system for different dipole strengths, i.ey*2=1.0, 2.0, 3.0, and
sizes and different cutoffs in the two simulationthe result-  4.0. The results are shown in Fig. 6. With the increasing
ing critical temperatures are in good accord. Therefore, in theharge strengthQ shows a broad maximum. This maximum
following simulations, we use the published critical tempera-decreases and slightly broadens with increasing solvent di-
tures from Ref[30] for u*2=1.0, 2.0 and from Ref31]for  pole strength, which is due to an increased attendant screen-
u*?=3.0, 4.0 to scale our temperatures to avoid time-ing of the charges resulting from the larger solvent dipole
consuming coexistence curve calculations. moment. In the cases of polyelectrolyte chains, Winkleal.
Now we consider the full system, i.e., one box containing[6] show that by increasing the parameker q;q;/4meeo,
the network plus solvent and the second box containing sowhich is related to the Bjerrum length, the radius of gyration
vent only. In Fig. 5, we show a typical approach to equilib-of the chains also exhibits a maximum. The authors attribute
rium. At TF =0.96 andP} =2.16, the chemical potentials of this to counterion condensation according to the interpreta-
the dipole solvent with,*2=1.0 are calculated via Widom’s tion in Ref.[4]. Our simulation results show that polyelec-
test particle method in the network and the solvent box. Figirolyte networks behave similarly, i.e., initially, the increase
ure 5a) shows that the exchange of solvent particles leads t&f d* leads to an increasing repulsion between charges fixed
the same solvent chemical potential in both boxes. Note tha@n the network and thus to an increasi@gWhen the coun-
Bc* in the network box fluctuates more strongly comparedterions condense against the polymer network, the repulsion
to the solvent box. Figure(B) shows how the solvent num- is diminished by screening, and the stretching of the network
ber densitiep* evolving, analogous to the chemical poten- segments is entropically reduced. To verify this, we calculate
tials. the radial pair distribution functiog™ ~(r) between network
The network swelling ratio is defined &=V/V,, where ~ charges and counterions far* #=1.0. The maximum of the
Vis the equilibrium volume of the swollen network avigis ~ nearest neighbor peak,,(r) and the corresponding peak
the equilibrium volume of the “dry” network under the same positionr ,,, Vs the network charge strengifi are shown in
thermodynamic conditions. Here, the “dry” network con- Fig. 7(a). At low g*, bothg,,-.(r) andr ., vary nonmono-
tains the polyelectrolyte including the counterions. It is in-tonically. However, the changes are quite small. With
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FIG. 6. The swelling ratio a of the network vs charge strength 15 | i
g* atTy =1.05 andP; =1.0. The different curves are for different :
dipole strengths. Squaregt*?=1.0; circles: u*2=2.0; up tri-
angles:u*2=3.0; down trianglesy*2=4.0. c
increasing charge strengtty,.(r) increases monotonically, 1F ]
and the corresponding,,,, decreases from roughly rlto
1.00. Because g,,,,(r) describes the extent of ion-
counterion pair formation and the corresponding, is the
average distance of the nearest counterions from the networ 0.5 —
beads, we find from Fig. (@) that the counterions begin to (b) 0 2 4 6 8 10
condense on the charged network at an intermedigte a
value, and this condensation becomes stronger with increas- _ _ _
ing charge strength. Figurglj shows the number of coun- FIG. 7. (8 The height of the nearest neighbor peak of the radial

terionsn within a distance 1.& of the network beads, which Pair distribution functiorgy;,,(r) and the corresponding radial peak

also increases with increasing (at large charge strength ~ POSition, rma, vs charge strengty*. (b) The average number of

Thus, Fig. 7 supports our above interpretation. counterions within a distance Irlof the central network beaavs
Another measure of counterion condensation is their moSharge strengtig®.

bility. The dynamics of the counterions near the network . o . ) )

charges is reflected by their residence time, which was firsgxhibits an overall increase with increasigy, which again

introduced by Impeyet al. [32]. First, we define a simple indicates that the counterions strongly couple to the charged

function P(t,t,), which is one if the counterion resides nNetwork beads. _ .

within a distance 1 of the network bead at botty and In the following, we compare the swelling behavior of our

to+t. Otherwise, it is zero. The average number of countePolyelectrolyte network under supercritical and subcritical

rions residing in the vicinity of a network beadatand at  conditions of the dipole solvent with*?=1.0. The swelling
t,+t, n(t) is ratios Q for networks with three different charge strengths

(g*=0.5, 3.5, and 8.pare shown in Fig. 9 fol} =0.96 and

Ne—t Nnetwork Neounterion TF=1.91. AtT7=1.91, all networks swell monotonically
1 ) : .
n(t)= > P.(t,t,), with the increasing pressure. At low pressure, the network
N¢—t Npetwork a=1 =1 =1 e with high charge strength swells more strongly than that with

(12 low charge strength, whereas at high pressure the network
with high charge strengthqgf =8.6) swells less than that

where N, is the total number of time stepbl,emork iS the — with smaller charge strengthgf =3.5). At T} =0.96, the
number of network beads in the system, aig  nierioniS  network with g* =0.5 shows a broad peak in the swelling
the number of counterion®i(t) decays exponentially, i.e., curve. For the larger charge strengths, the network swells
n(t)=n(0)exp(t/7), wherer is the residence time. Figure monotonically. Note that fog* =3.5, the swelling is much
8 shows the calculated for the counterions vg* in the  more pronounced than fag*=0.5 and 8.6. Thus, at}
case ofu*?=1.0 at T*=1.05 andP} =1.0. Note thatr =0.96, by increasing the charge strength, the swelling ratio
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FIG. 8. The reduced residence time expressed in Lennard-
Jones units, vs charge strenggh.

exhibits a peak at aroung* =3.5, which is similar to the
results obtained af} =1.05 (cf. Fig. 6).
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25 .

1.5 ¢ .

1 : ' )
0 0.5 1 1.5 2

FIG. 10. Comparison of the swelling behavior between the poly-
electrolyte network and the pure Lennard-Jones network. Solid
sqguaresg* = 3.5, T* = 1.35; solid circlesgq* =3.5, T* =2.70; hol-
low squares: pure LJ-system* =1.35; hollow circles: pure
Lennard-Joneg¢lLJ), T* =2.70.

Figure 10 shows a comparison between the swelling beFig. 6), swells monotonically with increasing pressure. For
havior of the polyelectrolyte network and the unchargedT* =2.70, the pure Lennard-Jones network swells monotoni-
Lennard-Jones network under the same thermodynamic cogally, whereas fof * = 1.35 it exhibits a peak in the swelling
ditions. The data for the uncharged Lennard-Jones networkurve with increasing pressure. The overall swelling ratios of
are taken from Ref.11]. For both temperatures studied herethe polyelectrolyte network are always larger than those of
(T*=2.70 andT*=1.35), the network with intermediate the neutral polymer network, which coincides with the result
charge strength i.eq* =3.5 (which is near to the peak in in Ref.[9]. Note that, in the simulations of the polyelectro-

3

FIG. 9. Swelling ratioQ vs P} obtained under subcritical and
supercritical conditions. Solid symbol§; = 1.91; hollow symbols:
T} =0.96. Squaregy* =0.5; circles:q* =3.5; trianglesq* =8.6.

lyte network, we use a dipole solvent with >=1.0. There-
fore, T* = 1.35 corresponds t6; =0.96, andT* =2.70 cor-
responds td; = 1.91. By combining Figs. 9 and 10, we find
that the network with the low charge strengtfi,=0.5, has a
similar swelling behavior as the neutral Lennard-Jones net-
work. Thus, a weak charging does not significantly change
our networks’ swelling behavior. However, the network with
the high charge strength, i.e =8.6, at which counterion
condensation and the attendant screening occur, shows a
similar swelling behavior as the network witi = 3.5 but
with diminished swelling ratios.

IV. CONCLUSION

In a series of previous papef$1-13, we have investi-
gated the swelling of uncharged model polymer networks
using both the computer simulations and the lattice theory. In
this work, we have extended our simulation methodology to
include polyelectrolyte networks in contact with an explicit
polar solvent. The interactions, Lennard-Jones plus
monopole-monopole, monopole-dipole, and dipole-dipole in-
teractions, were kept simple to study the main effects due to
changing the charge strengtt of the polyelectrolyte as
well as the dipole strength of the Stockmayer solvent. The
molecular dynamics simulations, which were carried out at
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fixed temperature and pressure, show a maximum of thpressure at two temperatures slightly below and above the
swelling ratio as a function af*. This effect, which results critical solvent temperature. This work shows that our simu-

due to a competition between electrostatic repulsion and thiation technique is well suited to study the model polyelec-

network conformational entropy, is also known from thetrolyte network even including explicit solvent.

study of ordinary polyelectrolytes. The effect is reduced if

the dipole moment of the Stockmayer fluid is increased. In

addition, we have calculated the residencg time of the coun- ACKNOWLEDGMENT

terions, which shows that the counterions are coupled

strongly to the charged network bead after condensation. Fi- We are grateful for valuable discussions with Dr. Chris-

nally, we have simulated the swelling ratio as a function oftian Holm.
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